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Abstract

One of the fundamental challenges to scale self-driving

is being able to create accurate high definition maps (HD

maps) with low cost. Current attempts to automate this pro-

cess typically focus on simple scenarios, estimate indepen-

dent maps per frame or do not have the level of precision

required by modern self driving vehicles. In contrast, in this

paper we focus on drawing the lane boundaries of complex

highways with many lanes that contain topology changes

due to forks and merges. Towards this goal, we formulate

the problem as inference in a directed acyclic graphical

model (DAG), where the nodes of the graph encode geo-

metric and topological properties of the local regions of the

lane boundaries. Since we do not know a priori the topology

of the lanes, we also infer the DAG topology (i.e., nodes and

edges) for each region. We demonstrate the effectiveness of

our approach on two major North American Highways in

two different states and show high precision and recall as

well as 89% correct topology.

1. Introduction

Self-driving vehicles are equipped with a plethora of sen-

sors, including GPS, cameras, LiDAR, radar and ultrason-

ics. This allows the vehicle to see with a field of view of

360 degrees, potentially having super human capabilities.

Despite decades of research, building reliable solutions that

can handle the complexity of the real world is still an open

problem.

Most modern self-driving vehicles utilize a high defini-

tion map (HD map), which contains information about the

location of lanes, their types, crosswalks, traffic lights, rules

at intersections, etc. This information is very accurate, typ-

ically with error on the order of a few centimeters. It can

thus help localization [37, 8, 36], perception [60, 32, 12],

motion planning [62], and even simulation [16]. Building

these maps is however one of the main obstacles to build-

ing self driving cars at scale. The typical process is very

cumbersome, involving a fleet of vehicles passing multiple

Figure 1: The input to our model is an aggregated LiDAR

intensity image and the output is a DAG of the lane bound-

aries parametrized by a deep neural network.

times across the same area to build accurate geometric rep-

resentations of the world. Annotators then label the location

of all these semantic landmarks by hand from a bird’s eye

view representation of the world. While building the geo-

metric map is time consuming, manual annotation is costly

in terms of capital.

In this paper, we tackle the problem of automatically cre-

ating HD maps of highways that are consistent over large ar-

eas. Unlike the common practice in the industry, we aim to

map the whole region from a single pass of the vehicle. To-

wards this goal, we first capitalize on the LiDAR mounted

on our self-driving vehicles to build a bird’s eye view (BEV)

representation of the world. We then exploit a deep network

to extract the exact geometry and topology of the underly-

ing lane network.

The main challenge of this task arises from the fact that

highways contain complex topological changes due to forks

and merges, where a lane boundary splits into two or two

lane boundaries merge into one. We address these chal-

lenges by formulating the problem as inference in a directed

acyclic graphical model (DAG), where the nodes of the

graph encode geometric and topological properties of the

12911



Global Context 

Network

Concat

Rotated 

RoI

Distance Transform

Multi-scale 

Feature
Position Header

State Header

Direction Header

Figure 2: Network Architecture: A deep global feature network is applied on the LiDAR intensity image followed by three

recurrent convolutional headers that parametrize a DAG of the lane boundaries. DT image is used for initialization of the

lane boundaries as well as recovery from mistakes.

local regions of the lane boundaries. Since we do not know

a priori the lane topology, we also infer the DAG topology

(i.e., nodes and edges) for each region. We leverage the

power of deep neural networks to represent the conditional

probabilities in the DAG. We then devise a simple yet effec-

tive greedy algorithm to incrementally estimate the graph as

well as the states of each node. We learn all the weights of

our deep neural network in an end-to-end manner. We call

our method DAGMapper.

We demonstrate the effectiveness of our approach on

two major North American Highways in two different states

1000 km apart. The dataset consists of LiDAR sensory data

and the corresponding lane network topology on areas of

high complexity such as forks and merges. Our approach

achieves a precision and recall of 89% and 88.7% respec-

tively at a maximum of 15 cm away from the actual loca-

tion of the lane boundaries. Moreover, our approach obtains

the correct topology 89% of the time. Finally, we show-

case the strong generalization of our approach by training

on a highway and testing on another belonging to a differ-

ent state. Our experiments show that no domain adaptation

is required.

2. Related Work

Road and lane detection: Detecting the lane markings

[56, 11], inferring the lane boundaries [6, 58, 22] as well

as finding the drivable surface [18, 5, 54] on the road is of

utmost importance for self-driving vehicles. Many meth-

ods have been proposed to tackle this problem. The au-

thors in [53, 33, 48, 3, 24, 15, 59, 2, 25] use appearance

and geometric cues to detect the road in an unsupervised or

semi-supervised fashion, while [46, 28, 61] apply graphical

models to estimate free space. With the advent of modern

deep learning [26], a new line of research for lane marking

detection has been established. In [27], the authors employ

vanishing points and train a neural network that detects lane

boundaries. [19] uses generative adversarial networks [20]

to further refine the detection and obtain thinner segmenta-

tions. The authors in [4] design a symmetric CNN enhanced

by wavelet transform in order to segment lane markings

from aerial imagery. In [6], camera and LiDAR imagery

are employed to predict a dense representation of the lane

boundaries in the form of a thresholded distance transform.

In [47], the authors treat lane detection as an instance seg-

mentation task where deep features corresponding to lane

markings are clustered.

Road network extraction: Leveraging aerial and satel-

lite imagery for the task of road network extraction goes

back many decades [17, 49]. In the early days, researchers

mainly extracted the road network topology by iteratively

growing a graph using simple heuristics on spectral fea-

tures of the roads [50, 7]. Recently, deep learning and

more advanced graph search algorithms have been lever-

aged [43, 44, 45, 38, 39, 40, 55, 9] to extract the road net-

work from aerial imagery more effectively. For instance,

[29] extract building and road network graphs directly in

the form of polygons from aerial imagery. [41, 42] en-

hance Open Street Maps with lane markings, sidewalks and

parking spots by applying graphical models on top of deep

features. [51] leverages GPS data to enhance road extrac-

tion from aerial imagery. [10] predicts both the orientation

and the semantic mask of the road to obtain topologically

correct and a connected road network from aerial imagery.

One however should note that these methods perform road

network extraction and semantic labeling at a coarse scale.

While they can be beneficial for routing purposes, they lack

the required resolution for self driving applications.

High Definition maps: Creating HD maps that have cen-

timeter level accuracy is crucial for the safe navigation of

self-driving vehicles. Recently, researchers have been de-

voted to generating HD maps automatically from various
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sensory data [23]. For example, the authors in [30] ex-

tract crosswalk polygons from top-down LiDAR and cam-

era imagery. [31, 21] employ deep convolutional networks

to extract road and lane boundaries in the form of polylines.

These lines of mapping work are similar to instance seg-

mentation methods [13, 1, 35] where structured representa-

tions of objects such as polygons are obtained. The algo-

rithms are thus amenable to an annotator in the loop.

At a high level, our work shares similarities with [21],

which predicts lane boundaries from a top down BEV Li-

DAR image by exploiting a recurrent convolutional neural

network. However, [21] cannot handle changes of topology

of lane boundaries and has baked in notions of lane bound-

ary ordering which we address in this paper.

3. Learning to Map

Our goal is to create HD maps directly from 3D sensory

data. More specifically, the input to our system is a BEV

aggregated LiDAR intensity image D and the output is a

collection of structured polylines corresponding to the lane

boundaries. Rather than focusing on local areas, we attempt

to extract the exact topology and geometry of the lane net-

work network on a long stretch of the highway. This is

extremely challenging as highways contain complex topo-

logical changes (e.g., forks and merges) and the area of cov-

erage is very large. Towards this goal, we formulate the un-

derlying geometric topology as a directed acyclic graph and

present a novel recurrent convolutional network that can ef-

fectively extract such topology from LiDAR data. We start

our discussion by describing our output space formulation

in terms of the DAG. Next, we explain how we exploit neu-

ral networks to parameterize each conditional probability

distribution. Finally, we describe how inference and learn-

ing are performed.

3.1. Problem Formulation and DAG Extraction

We draw our inspirations from how humans create lane

graphs when building maps. Given an initial vertex, the

annotators first trace the lane boundary with a sequence of

clicks that respect the local geometry. Then, if there is a

change of topology during the process, the annotators iden-

tify such points and annotate correspondingly. For instance,

if the click reaches the end of the road, one simply stops;

if there is a fork, one simply needs to create another branch

from the click. By using this simple approach, the annota-

tors can effectively label the road network in the form of a

DAG. In this work, we design an approach to road network

DAG discovery that mimics such an annotation process.

More formally, let G = (V,E) be a DAG, where V and

E denote the corresponding set of nodes and edges defin-

ing the topology. Each node vi = (xi, θi, si) in the DAG

encodes geometric and topological properties of a local re-

gion of the lane boundary. We further use vP(i) and vC(i)

Algorithm 1: Deep DAG Topology Discovery

Input : Aggregated point clouds, initial vertices

{vinit = (θinit, xinit, sinit)}
Output: Highway DAG Topology

1 Initialize queue Q with vertices {vinit};
2 while Q not empty do

3 vi ← Q.pop();
4 i← C(i);
5 while sP(i) not Terminate do

6 θi ← argmax p(θi|θP(i), sP(i), xP(i));
7 xi ← argmax p(xi|θi, sP(i), xP(i));
8 si ← argmax p(si|θi, sP(i), xP(i));
9 if si = Fork then

10 Q.insert(vi);
11 end

12 i← C(i);

13 end

14 end

respectively to denote the parent and the child of the node

vi. The geometric component xi denotes the position of

the vertex in global coordinates and θi refers to the turn-

ing angle at the previous vertex position xP(i). The state

component si is a categorical random variable that denotes

whether to continue the lane boundary without any change

of topology, to spawn an extra vertex for a new lane bound-

ary at a fork, or to terminate the lane boundary (at a merge).

Therefore, if si is a fork, then |C(i)| = 2; if si is stop at the

lane end of the lane boundary, then |C(i)| = 0.

Given the aggregated BEV LiDAR data D, our goal is to

find the Maximum A Posteriori (MAP) over the space of all

possible graphs G:

G∗ = argmax
G∈G

p(G|D). (1)

As G is a DAG in our case, the joint probability distribution

p(G|D) can be factorized into:

p(G|D) =
∏

vi∈V

p(vi|vP(i),D), (2)

where each conditional probability further decomposes into

geometric and topological components:

p(vi|vP(i),D) =p(θi|θP(i), sP(i), xP(i),D)

× p(xi|θi, sP(i), xP(i),D)

× p(si|θi, sP(i), xP(i),D). (3)

This conditional distributions are modeled with deep neu-

ral networks in order to handle the complexities of the real

world. Fig. 3 shows an example BEV image D and the

inference process of a lane boundary where there is a fork.

We provide in the next section an in depth discussion of

the networks.
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Figure 3: (a) The BEV aggregated LiDAR image D of an area of the highway with a fork. The green box shows a zoomed

in area for visualization of the inference process. (b) The current subgraph of the inferred bottom lane boundary. (c) The

direction θiof the new ROI (yellow box) along the lane boundary is predicted. (d) A new node is predicted with position xi

(red dot) within the ROI with the fork state si. (e) Two lane boundaries emanate from the fork node and the process continues.

Topology Extraction: Unfortunately, the space of G is

exponentially large. It is thus computationally intractable to

consider all possible DAGs. To tackle this issue, we design

an approach that greedily constructs the graph and com-

putes the geometric and topological properties of each ver-

tex. Specifically, we take the argmax of each component in

Eq. (3) to obtain the most likely topological and geometric

states for each node vi. Given a parent node vP(i), we first

predict along which direction θi the node vi would be. Then

we attend to a local region of interest along the lane bound-

ary specified by θi and predict the vertex position xi and

the local state si. The state specifies that either (1) there is

no change of topology and we continue as normal, (2) there

is a fork and we continue the current lane boundary as nor-

mal but at the same time spawn a new vertex for a new lane

boundary, or (3) the current lane boundary has terminated at

the merge, and hence the node vi has no child. By iterating

through the procedure, we are able to obtain the structure

of the DAG as well as their geometric positions. Our struc-

ture discovery algorithm is summarized in Alg. 1. We next

describe the backbone network that we used to extract the

context features and the header networks that approximate

the geometrical and topological probability distribution.

3.2. Network Design

In this work, we exploit neural networks to approximate

the DAG probability distributions described in the previous

section, also shown in Alg. 1. At a high level, as shown

in Fig. 2, we first exploit a global feature network to ex-

tract multi-scale features and a distance transform network

to encode explicit lane boundary information. The features

are then passed to the direction header to predict a rotated

Region of Interest (RoI) along the lane boundary. Finally,

the position header and the state header condition on the

features within the RoI predict the position and state of the

next vertex. We now present the high level details of each

head and refer the reader to the supplementary material for

a description of the full architecture.

Global Feature Network: The aim of this network is to

build features for the header networks to draw upon. Since

the changes of topology are usually very gradual, it will be

very difficult to infer them if the features capture merely lo-

cal observations or the network has a small receptive field

(see Fig. 3). For instance, at a fork, a lane boundary gradu-

ally splits into two so that vehicles have enough time to exit

the highway and slow down in a safe manner. Similarly,

at a merge, two lanes become one gradually over a long

stretch so that vehicles accrue speed and enter the highway

smoothly without colliding with the ongoing flow of traffic.

The input to this network is a BEV projected aggregated

LiDAR intensity image D ∈ R
1×H×W at 5 cm per pixel.

Our images are of dimension 8000 pixels in width by max-

imum 1200 in height corresponding to 400m by maximum

60m in the direction of travel of the mapping vehicle as

shown in Fig. 3. As such, to better infer the state of each

vertex, one must exploit larger contextual information. Fol-

lowing [21], we adopt an encoder-decoder architecture [14]

built upon a feature pyramid network [34] that encodes the

context of the lane boundaries and the scene. The bottom-

up, top-down structure enables the network to process and

aggregate multi-scale features; the skip links help preserve

spatial information at each resolution. The output of this

network is a feature map F ∈ R
C×H

4
×W

4 .

Distance Transform Network: The distance transform

(DT) and more specifically the thresholded inverse DT has

been proven to be an effective feature for mapping [30, 31].

It encodes at each point in the image the relative distance to

the closest lane boundary. As such, we employ a header that

consists of a sequence of residual layers that takes as input

the global feature map F and outputs a thresholded inverse

DT image D ∈ R1×H

4
×W

4 . We use this DT image D for

three purposes: 1) We stack it to the global feature map F
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Precision at (px) Recall at (px) F1 at (px)

2 3 5 10 2 3 5 10 2 3 5 10

DT baseline [6] 68.1 87.9 96.3 98.0 65.8 85.0 93.5 96.2 66.9 86.4 94.9 97.0

HRAN [21] with GT init 55.6 71.0 84.0 90.9 45.9 58.1 68.3 74.0 50.1 63.7 75.1 81.4

Ours 76.4 89.0 94.6 96.6 76.2 88.7 94.2 96.1 76.3 88.8 94.4 96.3

Table 1: Comparison to the baselines from [6, 21]. We highlight the precision, recall and F1 metrics at thresholds of 2, 3, 5

and 10 px (5cm/px).

as an additional channel and feed it to the other headers. Our

aim is to use D as a form of attention on the position of the

lane boundaries. 2) We threshold, binarize and skeletonize

D and obtain the endpoints of the skeleton as the initial ver-

tices of the graph. 3) After inferring the graph using Alg.

1, we draw the missed lane boundaries by initializing points

on the regions of the D that are not covered by our graph.

Direction Header: This network serves as an approxima-

tion to p(θi|θP(i), sP(i), xP(i)). Given the geometrical and

topological information of the parent vertex, this header

predicts the direction of the rotated RoI along the lane

boundary where the current vertex lies. The input to this

header is a bilinearly interpolated axis aligned crop from the

concatenation of F , D centered at xP(i) and the channel-

wise one hot encoding of the state sP(i). At a fork or a

merge, the two lane boundaries are very close to each other.

Conditioning on the state vector signals to the header to pre-

dict the correct direction corresponding to its lane boundary.

This input is fed into a simple convolutional RNN that out-

puts a direction vector of the next rotated ROI. We employ

an RNN to encode history of the previous directions and

states.

Position Header: This network can be viewed as an ap-

proximation to p(xi|θi, sP(i), xP(i)). Given the state and

position of the previous vertex, the network predicts a prob-

ability distribution over all possible positions within the ro-

tated ROI along the lane boundary generated by the direc-

tion header. This RoI is bilinearly interpolated from the

concatenation of F , D and channel-wise one-hot encoding

of sP(i). After the interpolation, we upsample the region to

the original image dimension and pass it to a convolutional

recurrent neural network (RNN). The output of the RNN is

fed to a lightweight encoder-decoder network that outputs a

softmax probability map of the position xi that is mapped

to the global coordinate frame of the image.

State Header This header can be regarded as an approxi-

mation to p(si|θi, sP(i), xP(i)), which infers the local topo-

logical state of the lane boundaries. Specifically, the net-

work predicts a categorical distribution specifying whether

to continue drawing normally, to stop drawing, or to fork a

new lane boundary as we have arrived to a merge. The input

to this model is the same rotated RoI of the position header.

A convolutional RNN is employed to encode the history and

the output is the softmax probability over the three states.

3.3. Learning

We employ a multi task objective to provide supervision

to all the different parts of the model. Since all the com-

ponents are differentiable we can learn our model end-to-

end. In particular, similar to [21] we employ the symmetric

Chamfer distance to match each GT polyline Q to its pre-

diction P :

L(P,Q) =
∑

i

min
q∈Q
‖pi − q‖2 +

∑

j

min
p∈P
‖p− qj‖2 (4)

where p and q are the densely sampled coordinates on poly-

lines P and Q respectively. To learn the topology states, we

use multi label focal loss with a slight modification; Rather

than taking the mean of all the individual losses, we add

them up and divide by the sum of the focal weights. Here,

the intuition is that the wrong predictions are more empha-

sized and are not dampened by the over-sampled class cor-

responding to the normal state. Finally, we employ cosine

similarity loss and the ℓ2 loss to learn the directions and

the distance transform. We refer the reader to the supple-

mentary material for the full training and implementation

details.

4. Experimental Evaluation

Dataset: Our dataset consists of LiDAR point clouds cap-

tured by driving a mapping vehicle multiple times through

a major North American Highway. For each run of the ve-

hicle, we aggregate the point clouds using IMU odometry

data in a common coordinate frame with an arbitrary ori-

gin. In our setting of offline mapping, the aggregation of

point clouds in a local area is taken from all the past as well

future LiDAR sweeps that hit that area. Next, we project

the point clouds onto BEV and rasterize at 5 cm per pixel

resolution by taking the intensity of the returned point with

the lowest elevation value. Since we are interested in HD

mapping of lane boundaries that fall on the surface of the

road, by taking the lowest elevation point we aim to filter

out the LiDAR return from other moving vehicles.

We are interested in mapping difficult areas on the high-

way such as forks and merges. As such we locate where

these interesting topologies occur and crop a rectangular
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Precision at (px) Recall at (px) F1 at (px)

G M R S 2 3 5 10 2 3 5 10 2 3 5 10

- - - X 75.4 87.4 91.6 93.5 62.1 72.0 75.6 77.4 68.1 79.0 82.8 84.7

X - - X 74.1 86.6 93.0 95.9 65.6 76.5 82.0 84.5 69.5 81.2 87.2 89.8

X - X X 73.3 85.9 92.6 95.4 72.8 85.2 91.6 94.4 73.1 85.6 92.1 94.9

X X X - 69.8 83.0 90.6 93.4 70.2 83.5 91.2 94.2 70.0 83.3 90.9 93.8

X X - X 77.0 89.5 95.1 96.9 75.0 87.2 92.4 94.2 76.0 88.3 93.7 95.5

X X X X 76.4 89.0 94.6 96.6 76.2 88.7 94.2 96.1 76.3 88.8 94.4 96.3

Table 2: We evaluate the contribution of the different components of our model. In particular, we assess the global feature

network (G), the conv-RNN (M), the notion of state (S), and recovery using the DT image (R) in case of missing a lane

boundary.

2 px 3 px 5 px 10 px

Precision 57.4 72.1 83.4 88.6

Recall 53.0 66.2 76.1 80.9

F1 55.1 69.0 79.5 84.6

Table 3: Generalization to a new highway: we report preci-

sion, recall and F1 metrics of training on all the images of

one highway and testing on a completely new highway.

region of 8000 pixels by a maximum of 1200 pixels with

the long side of the rectangle perpendicular to the trajectory

of the mapping vehicle. Note that the height of the image

varies in each example depending on the curvature of the

road. This crop corresponds to a 400m by maximum 60m

region.

We annotate the ground truth by drawing polyline in-

stances associated to each lane boundary. At a fork we as-

sign a new polyline to the new lane boundary that appears.

In total we create 3000 images from 68 unique fork/merge

areas on the highway.

Since our aim is scalable high definition mapping of

highways, we evaluate the effectiveness of our method on

a different highway in a different geographical region. As

such we drive our mapping vehicle multiple times in this

new highway and collect and annotate 336 images from

114 unique fork/merge areas on the highway. We use this

smaller dataset only for evaluation.

To create our train, val and test splits, we first divide our

68 fork/merge areas randomly with the ratio of 70:15:15

and place the images of each area in the corresponding split.

This way the same fork/merge area is not present in differ-

ent splits. To gain statistical significance in our reported

metrics, we repeat this procedure three time to obtain three

cross validation splits. As such, for baseline comparisons

and ablation studies, we train and test each model three

times.

Baselines: Since there are no baselines in the literature

that perform offline mapping on long stretches of the high-

way using BEV LiDAR imagery, we create two baselines

based on [6] and [21]. For the first baseline based on [6]

denoted by (DT baseline) , we use the same backbone of

the global feature network with additional upsampling and

residual layers to only predict the the inverse thresholded

DT image at the original image dimension. We threshold

the distance transform at 32 pixels on each side of the lane

boundary. Next, we binarize the DT image and skeletonize

[52] to obtain a dense representation of the lane boundaries.

This is a very strong baseline since the whole capacity of the

backbone network is devoted to predicting the DT image.

However, it differs in our method in that we output struc-

tured representations of the lane boundaries in the form of

polylines in an end-to-end manner that is amenable to an an-

notator in the loop for correction tasks. We create a second

baseline based on [21] denoted by (HRAN). The recurrent

lane counting module of HRAN architecture has the baked

in notion of attending to new lane boundaries from left to

right of the road in the bottom of the image which breaks

down for the general case of having new lane boundaries

spawning at forks and merges. As such we made this base-

line stronger by removing the lane counting module dur-

ing training and inference and instead providing the ground

truth starting points for initialization. Note that our method

infers the initial points automatically from the DT image.

Precision/Recall: We report the precision and recall met-

ric of [57]. Precision is defined as the number of densified

predicted polyline points that fall within a threshold of the

GT polylines divided by the total length of the predicted

polylines. The sums and the divisions are taken over all the

images rather than per lane boundary or per image similar to

object detection task metrics. Recall is the same but the role

of prediction and GT polylines are reversed. We evaluate at

2,3,5, and 10 pixels corresponding to 10, 15, 25 and 50 cm.

As we can see in Table 1, we outperform both baselines.

For DT baseline, we obtain higher precision and recall by

a wide margin at 2 and 3 pixels corresponding to 10 and

15. However, this baseline performs better at precision and

comparable at recall at 5 and 10 pixels corresponding to 25

and 50 cm. For self driving applications where cm accu-
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Figure 4: Qualitative results: Rows 1-3 showcase the effectiveness of our method. Row 4 is a failure case where two lane

boundaries are bottom are drawn partially.

racy in HD maps is desirable for the safe navigation of the

self driving vehicle, our method proves valuable. For the

[21] HRAN baseline, where we made it stronger by using

GT initial points, we observe that its performance is signif-

icantly worse. This is due to HRAN not having an explicit

notion of state in the model which prevents the lane bound-

aries to split at forks and terminate at merges.

Topology: For an annotator in the loop to make the least

number of clicks, it is desirable that only one predicted

polyline segment is assigned to a GT polyline. To as-

sess this, we assign each predicted polyline to the GT lane
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Figure 5: Generalization to a new highway: We train on all

the images of one highway and test on another highway in

a completely different geographical region to test the gen-

eralization of our model. Please zoom.

boundary with the largest intersection at a distance of 20

pixels within the GT. We find that 89% of GT lane bound-

aries have the correct topology.

Ablation Study: In our ablation studies, we evaluate the

importance of the global feature network (G), the Convo-

lutional RNN memory (M) for the headers as well as re-

initializing from the DT prediction (R) when we miss draw-

ing lane boundaries. Finally, we evaluate the importance

of the notion of state (S) by removing it completely from

our model. That is the node vi will not have a state com-

ponent si and the position xi and direction θi will not be

conditioned on si.

To assess the importance of the global feature network,

we apply the direction, state and position header directly on

the LiDAR image at a local ROI. This way the receptive

field of each header is restricted to the attended ROI and

lacks a global context of lane boundaries. By comparing

rows 1 and 2 of Table 2, we see that just adding the global

feature network increases the recall by a wide margin. The

precision remains competitive as the model can still do a

good job predicting the position of the lane boundaries in a

local region.

Furthermore, we observe in rows 3 and 5 of Table 2, that

adding memory and DT recovery to the global feature net-

work, again boosts the performance by a large margin es-

pecially in recall. However, we note that the largest gain

is obtained from the memory components. If we remove

the notion of state and keep all the other components, both

precision and recall suffer dramatically as shown in row 4.

This highlights the importance of having state in our model.

Finally, we note that our full model with all the components

has slightly lower precision than the model with no recov-

ery (row 5) and better recall but overall performs the best in

terms of F1. We note that these ablations are the average on

the test sets of the three cross validation splits.

Qualitative Results: Please refer to Figure 4 for qualita-

tive results. In row 1 we showcase how our model correctly

infers the change of topology by spawning two new lane

boundaries at a fork. In rows 2 and 3, we demonstrate the

behavior of our model at a merge where two lane bound-

aries become one and either one or both terminate. In row

4. we showcase a failure mode. At the fork, although we

have detected a change of topology, the direction header

has failed to infer the correct ROI. At the merge, the up-

per merging lane boundary overlaps a straight one without

stopping. Here an annotator has to manually fix these prob-

lematic cases rather than drawing everything from scratch.

Generalization to a New Highway: The ultimate goal of

our method is to enable large scale high definition mapping

of highways to in turn facilitate safe self driving at scale. To

evaluate the generalization of our method, we train a new

model on all the images in the train,val, and test splits of

our dataset and we evaluate on a different highway located

in a different geographical region. In Table 3, we evaluate

our model in terms of precision and recall. Although the

performance is dropped as expected in comparison to Table

1 where we evaluated on the same highway, we still obtain

very promising results. In particular, at 2 pixels or 5 cm,

we have 57.4% precision and 53.0% recall while at a wider

threshold of 10 pixels or 50 cm, we obtain precision and

recall values of 88.6% and 80.9% respectively. In Figure 5,

we demonstrate our predictions on this new highway.

Failure Cases: The failure modes consists when a lane

boundary is partially not drawn or missed completely and is

reflected in our recall metric. In these cases, the annotators

have to correct only the problematic cases rather than draw

everything from scratch.

5. Conclusion

In this paper we have shown how to draw the lane bound-

aries of complex highways with many lanes that contain

topology changes due to forks and merges. Towards this

goal, we have formulated the problem as inference in a

DAG, where the nodes of the graph encode geometric and

topological properties of the local regions of the lane bound-

aries. We also derived a simple yet effective greedy algo-

rithm that allow us to infer the DAG topology (i.e., nodes

and edges) for each region. We have demonstrated the ef-

fectiveness of our approach on two major North American

Highways in two different states and show high accuracy in

terms of the line drawing and the topology recovered. We

plan to extend our approach to utilize also cameras that are

typically available onboard self driving vehicles to further

improve the performance.
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