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Abstract

In this paper, we tackle the problem of online road net-
work extraction from sparse 3D point clouds. Our method
is inspired by how an annotator builds a lane graph, by
first identifying how many lanes there are and then drawing
each one in turn. We develop a hierarchical recurrent net-
work that attends to initial regions of a lane boundary and
traces them out completely by outputting a structured poly-
line. We also propose a novel differentiable loss function
that measures the deviation of the edges of the ground truth
polylines and their predictions. This is more suitable than
distances on vertices, as there exists many ways to draw
equivalent polylines. We demonstrate the effectiveness of
our method on a 90 km stretch of highway, and show that
we can recover the right topology 92% of the time.

1. Introduction
A self driving car software stack is typically composed of

three main components: perception, prediction and motion
planning. Perception consists of estimating where everyone
is in the scene in 3D given data from the sensors (e.g., LI-
DAR, cameras, radar, ultrasonic). Prediction is concerned
with predicting the future action of the dynamic objects that
have been identified by perception. Finally, the outputs of
perception and prediction are used by motion planning in
order to decide the trajectory of the ego-car.

Despite several decades of research, these three tasks re-
main an open problem. To facilitate these tasks, most self-
driving car teams rely on high definition maps, commonly
referred to as HD maps, which contain both geometric and
semantic information about the static environment. For ex-
ample, planning where to go is easier if we know the geom-
etry of the road (i.e., lane composition). This information
is also very useful to determine the future motion of other
traffic participants. Furthermore, false positives in vehicle
detection can be reduced if we know where the road is.

To create these maps, most self-driving car programs
rely on offline processes where semantic components such
as lanes are extracted with the help of a user in the loop.

Figure 1. Our hierarchical recurrent attention model takes a sparse
point cloud sweep of the road (right) and outputs (left) a struc-
tured representation of the road network where each lane boundary
instance is retrieved.

Furthermore, they typically require multiple passes over the
same environment in order to build accurate geometric rep-
resentations. This is very expensive and requires a dedi-
cated fleet for mapping. It has been estimated that mapping
the US only once will cost over 2 Billion dollars. This ap-
proach is not scalable globally and thus it is of fundamental
importance to design online mapping algorithms that do not
require a user in the loop or in the least minimize their in-
volvement to correction tasks.

The most basic information that is required for driving
is to be able to extract the location of the lanes in 3D space
(mapping), and their relationship to the ego-car (localiza-
tion to the map). In the context of maps, these lanes are
structured objects and are typically represented as a set of
polylines, one per lane boundary. We refer the reader to Fig.
1 for a representation of a lane graph.

Existing automatic approaches to lane extraction have
two major drawbacks. First, they treat the problem as se-
mantic segmentation [26, 27] or lane marking detection
[20, 11, 14]. As a consequence they produce solutions that
are not topologically correct, e.g., a lane might have holes
due to occlusion. This is problematic as most motion plan-
ners can only handle lane graphs that are structured and rep-
resent the right topology. Second, these methods attempt
to extract lane graphs from camera images [43]. Unfortu-
nately, a good image based lane estimation is not equivalent
to an accurate 3D lane extraction. Due to perspective pro-
jection, pixels in image space have different physical widths
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in 3D. This largely limits their applications in real world.
With these challenges in mind, we present a novel

approach to online mapping that extracts structured lane
boundaries directly from a single LIDAR sweep. To be
more specific, we propose a hierarchical recurrent neural
network that is able to both count the number of lanes and
draw them out. The model takes as input sparse LIDAR
point clouds, which is the natural 3D space for detecting
lane boundaries, and outputs a structured representation of
the road network that is topologically correct and hence
consumable by existing motion planners. As there exists
many ways to draw equivalent polylines, we further de-
velop a novel differentiable loss function that directly mini-
mizes the distance between two polylines rather than penal-
izing the deviation of GT and predicted vertices using cross-
entropy or regression loss [5]. The objective helps our net-
work focus on learning the important lane graph structure,
rather than the irrelevant vertices coordinates. Our model
can be trained in an end-to-end manner without heuristics
or post-processing steps such as curve fitting. The over-
all process mimics how humans annotate maps and thus is
amenable to a guided user in the loop.

We demonstrate the effectiveness of our approach on
highway sequences captured over a range of 90 km. Our
approach determines the right topology 92% of the time.
Furthermore, we recover the correct road network with an
average of 92% precision and 91% recall at a maximum dis-
tance of 20 cm away from the lane boundaries .

2. Related Work

Road and Lane Detection Finding the drivable path in
front of an autonomous vehicle and the lane boundaries is
of outmost importance. [29, 21, 42] apply graphical mod-
els on manually generated annotations to estimate the free
space and the road. Some other methods [36, 22, 31, 3,
16, 7, 39, 1, 18] use unsupervised or self-supervised meth-
ods based on color, texture or geometric priors to detect the
road. The authors in [19, 38, 13, 2, 28] develop road detec-
tion algorithms either by automatically or manully generat-
ing labels from maps or using them as priors. The authors in
[8] extend a small subset of the KITTI [9] dataset and pro-
vide a benchmark for detecting polygons that define the free
space of the road and the ego-lane. Recently, the resurgence
of deep learning methods [17, 35] has provided tremendous
success in many different computer vision tasks. For lane
detection, [20] train a neural network that detects land and
road markings by leveraging vanishing points.

Semantic segmentation of aerial images/ road network
extraction Aerial imagery can be used for road network
extraction and segmentation. Although, aerial imagery can
cover a huge portion of the world, they operate on a lower

Figure 2. The overall structure of our model where a convolutional
recurrent neural network sequentially attends to the initial regions
of the lane boundaries while a another convolutional LSTM traces
them out fully. This process iterates until the first RNN signals a
stop.

resolution and thus cannot be used for fine grained map cre-
ation. [26, 27] enhance freely available maps using aerial
imagery by fine grained semantic segmentation and infer-
ence in an MRF. In other work [40, 41, 30] extract the road
network from aerial images using a CRF model. [25] use an
end-to-end fully convolutional network to segment high res-
olution aerial images. [25] presents an end-to-end semantic
segmentation deep learning approach of very high resolu-
tion aerial images. Recently, The Torontocity dataset [37]
provides a benchmark for extracting road curbs and center-
lines from bird’s eye view maps.

Other Our work is inspired by [5] in which the au-
thors develop a semi-automatic annotation tool of object
instances by directly predicting the vertices of the poly-
gon outlining the object’s segmentation mask. They use the
cross-entropy loss to learn the position of the vertices. We
note that a loss function on the location of the vertices is
not appropriate as there are many ways to draw the same
polygon. As such, we design a novel loss function that pe-
nalizes directly in a differentiable manner the deviation of
the edges of the predicted polylines from their ground truth.
In [33, 34] the a recurrent network iteratively attends to ob-
ject instances and segments them. We use a similar idea by
attending to lane boundaries and drawing them out.

3. Hierarchical Recurrent Attention Model for
Lane Graph Extraction

Our goal is to extract a structured representation of the
road network, which we will henceforth refer to as a lane
graph. A lane graph is defined as a set of polylines, each of
which defines a lane boundary. Towards this goal, we ex-
ploit a LIDAR sweep in the form of a point cloud projected
onto bird’s eye view (BEV) as our input x ∈ RH×W×1.
The point cloud contains LIDAR intensity for each point,
a cue that allows us to exploit the reflective properties of



paint. This provides us with a sparse representation of the
3D world. We refer the reader to Fig. 1 for an example of
our point cloud input and the predicted lane graph.

Our approach is inspired by how humans create lane
graphs when building maps. In particular, annotators are
presented with a bird’s eye view of the world, and sequen-
tially draw one lane boundary at a time. To do so, they
typically start from the bottom corner of the left most lane
and draw each lane by first choosing an initial vertex on the
lane boundary and tracing the lane boundary by a sequence
of further clicks. When the lane boundary is fully speci-
fied in the form of a polyline, the annotator moves on to its
closest neighbour and repeats the process until no more lane
boundaries are visible.

We design a structured neural network that closely mim-
ics this process as demonstrated in Fig. 2. Our hierarchical
recurrent network sequentially produces a distribution over
the initial regions of the lane boundaries, attends to them
and then draws a polyline over the chosen lane boundary by
outputting a sequence of vertices.

Our network iterates this process until it decides that no
more lane boundaries are present and it is time to stop.

In the following, we explain in detail the main compo-
nents of our model. In particular, an encoder network is
shared by a recurrent attention module that attends to the
initial regions of the lane boundaries (Section 3.2) and a de-
coder network that feeds into a conv-lstm that draws each
lane boundary given the initial region (Section 3.3).

3.1. Encoder-Decoder Backbone

Our model is based upon the feature pyramid networks
of [23, 24, 6], where a residual [10] encoder-decoder ar-
chitecture with lateral additive connections is used to build
features at different scales. The features of the encoder are
shared by both the recurrent attention module 3.2 and the
Polyline-RNN 3.3 and capture information about the loca-
tion of the lane boundaries at different scales. The decoder
is composed of multiple convolution and bilinear upsam-
pling modules that build a feature map used by only the
Polyline-RNN module. We use batch norm [12] and ReLU
non-linearity throughout the network. The exact architec-
ture is outlined in the supplementary material.

3.2. Recurrent Attention for Lane Counting

We design a network that is able to decide how many
lane boundaries exist and attends to the region in the im-
age where the lane boundary begins. We have deliberately
simplified the output of the net to be a region rather than
the exact coordinates of a vertex. This way, if run in in-
teractive mode, an annotator is only required to provide a
coarse starting region for a lane boundary to be drawn. The
task of predicting the actual vertex coordinates falls upon
the Polyline-RNN which we shall describe in detail in sec-

tion 3.3. These regions correspond to non-overlapping bins
that are obtained by dividing the input x into K segments
along each spatial dimension as demonstrated in Fig. 4.

For the network to predict the starting regions of the lane
boundaries, we deploy a similar strategy as [32, 5] and con-
catenate the feature maps of the encoder network so that the
net has clues at different granularities. We use convolution
layers with large non-overlapping receptive fields to down-
sample the larger feature maps and use bilinear upsampling
for the smaller feature maps to bring all of them to the same
resolution. Next, this feature map is fed to two residual
blocks in order to obtain a final feature map f of smaller
resolution than the point cloud input x to the network. We
reduce the resolution since we care only about the regions
where a lane boundary starts rather than its exact starting
coordinate.

Next, a vanilla convolutional RNN is iteratively applied
to f with the task of attending to regions of x and outputting
a starting region of the lane boundary.

In order to be able to stop, this RNN also outputs a binary
variable denoting whether we have already counted all the
lanes or not. In particular, at each timestep t, the conv-RNN
outputs on one hand the probability ht of halting while the
other output is a softmax st of dimension K ×K × 1 over
the region of the starting vertex of the next lane boundary.
At inference time, we replace the softmax with an argmax
and threshold the probability of halting.

3.3. Drawing Lane Boundaries with Polyline-RNN

We use a convolutional LSTM to iteratively draw a poly-
line as a sequence of vertices. In particular, the recurrent at-
tention mechanism of the previous section provides us with
a region which contains the first vertex of the lane bound-
ary. A section of dimension Hc × Wc around this region
is cropped from the output feature map of the decoder of
section 3.1 and fed into the conv-LSTM. The conv-LSTM
then produces a softmax over the position of the next ver-
tex pt1 on the lane boundary. The vertex pt1 is then used to
crop out the next region and the process continues until the
lane boundary is fully traced or we reach the boundary of
the image. As such we obtain our polyline Pt at timestep t.

4. Learning
To facilitate learning, we derive a multitask objective that

provides supervision for each component of our hierarchi-
cal recurrent attention model. Our output loss function com-
putes the difference between two polylines, the ground truth
and our prediction. Note that a loss function on the location
of the vertices is not appropriate as there are many ways to
draw the same polyline which will have very different loca-
tion of vertices.

Instead, we directly penalize the deviations of the two
curves. We further provide supervision at the level of our



Figure 3. Our Hierarchical Recurrent Attention Network: An encoder network is shared by the recurrent attention module for counting and
attending to the initial regions of the lane boundaries as well as a decoder that provides features for the Polyline-RNN module that draws
the lane boundaries of the sparse point cloud.

Figure 4. The input point cloud (right) is discretized into K bins
along each dimension (left). The recurrent attention module for
counting, as well as an annotator, need only to focus on an initial
region of the lane boundary rather than an exact vertex.

attention mechanism over regions which contain a starting
vertex of a polyline. We also define a loss function that
teaches the network when to stop counting the polylines.

4.1. Polyline Loss

We encourage the edges of a prediction P to superim-
pose perfectly on those of a ground truth Q. In particular,
we define:

L(P,Q) = LP→Q + LQ→P

=
∑
i

min
q∈Q
‖pi − q‖2 +

∑
j

min
p∈P
‖p− qj‖2 (1)

Note that although our predictions are vertices of P , in the
above equation we sum over the coordinates of all the edge
pixels of P and Q rather than solely their vertices.

We note that the two terms of the loss function are sym-
metric. Intuitively, the first term LP→Q encourages the pre-

dicted polyline P to lie on the ground truth Q by summing
and penalizing the deviation of all the edge pixels of P from
those of Q. While necessary, this loss is not sufficient for P
to cover Q completely since it ignores those superimposing
polylines P that are shorter than Q. To overcome this, the
second loss LQ→P instead penalizes the deviations of the
ground truth from the predicted polyline. In particular, if a
segment of Q is not covered by P , all the edge pixels of that
segment would incur a loss.

As noted, the loss function in Eq. (1) is defined w.r.t. to
all the edge pixel coordinates on P whereas the Polyline-
RNN network predicts only a set of vertices. As such, for
every two consecutive vertices pj and pj+1 on P , we obtain
the coordinates of all the edge pixel points lying in-between
by taking their convex combination. This makes the gra-
dient flow from the loss functions to the network through
every edge point.

In practice, both loss functions can be obtained by com-
puting the pairwise distances, and then taking a min-pool
and finally summing. We illustrate the two terms LP→Q

and LQ→P in Fig. 5(a) and show their effect through a toy
example in Fig. 5(b).

Comparison against Polygon-RNN [5] While our work
is inspired by [5], there exists a critical difference — our
loss functions are defined w.r.t. the edges rather than the
vertices. As shown in Fig. 6(a), there exist many ways to
draw equivalent polylines. It is thus more suitable to con-
sider the distance between polylines than the deviation of
the vertices. Fig. 6(b) shows the caveats of [5]. The predic-
tion can be superimposed perfectly with the ground truth,
yet Polygon-RNN still penalizes the model. Since polygons
are simply special cases of polylines, our polyline loss can
be directly plugged into [5]. It can also be applied to other
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Figure 5. (a) Illustration of the two objectives LP→Q and LQ→P .
(b) The effect of the objectives on a toy example. LP→Q and
LQ→P both have blind spots. By combining both, the model can
learn to superimpose perfectly.
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Figure 6. (a) A subset of polylines that are equivalent. (b) Compar-
ison to Polygon-RNN [5]. Our loss function encourages the model
to learn to draw equivalent polylines, rather than output the exact
vertex coordinate.

tasks that require learning boundaries, such as boundary de-
tection [44]. We leave this for future study.

4.2. Attention Loss

To train the recurrent attention network for polyline
counting, we apply a cross entropy loss on the region soft-
max output st and a binary cross entropy loss on the halt-
ing probability ht. The ground truth for the regions are the
bins in x where the initial vertex of the lane boundaries falls
upon. We present the ground truth bins to the loss function
in order from the left of the image to the right similar to
how an annotator picks the initial regions. For the binary
cross entropy, the ground truth is equal to one for each lane
boundary and zero when it is time to stop counting.

4.3. Training Procedure

We train our model in two stages. At first, the encoder-
decoder model with only the polyline-RNN is trained with
the ground truth initial regions. We clip the gradients of the
conv-lstm to the range of [−10, 10] to remedy the explod-
ing/vanishing gradient problem. For training the conv-lstm,
we crop the next region using the predicted previous vertex.
The conv-lstm iterates until the next region falls outside the
image boundaries or a maximum of image height divided

by crop height plus 3. We let the size of the crop to be
60 × 60 pixels. We train using SGD [4] with initial learing
rate of 0.001, weight decay 0.0005 and momentum 0.9 for
one epoch with a minibatch size of 1.

Next, we freeze the weights of the encoder and train only
the parameters of the recurrent attention module for count-
ing for one epoch. We train the conv-rnn that predicts the
number of lane boundaires using the Adam optimizer [15]
with an initial learning rate of 0.0005 and weight decay of
0.0005 with a minibatch size of 20. The training criteria
were determined based on the results on the validation set.
The model is trained on one Titan XP GPU for close to 24
hours with the majority of the training time devoted to the
Conv-LSTM module.

5. Experimental Evaluation
Dataset: We curated a dataset on highways and mapped
a stretch of 90 km and geofenced to rotating consecutive
stretches of 10 km for each of training, validation and the
test set. Our autonomous vehicle uses a mounted Lidar that
captures point clouds at 10 fps. We sampled uniformly
50,000 frames for the training set and 10,000 frames for
each of the validation and the test sets from the correspond-
ing regions. Our data contains both night and day scenes.

For each frame, we project the 3D point cloud and the
ground truth lane graph to BEV such that the autonomous
vehicle is positioned on the bottom center of the image
looking up. We rasterize the lidar point cloud such that each
pixel corresponds to 5 cm. We use images of size 960×960
pixels corresponding to 48 m in front and 24 meters on each
side of the autonomous vehicle.

Baselines: Since there are no existing baselines in the lit-
erature for this task, we developed a strong baseline to eval-
uate and motivate our method. In particular, we take the
encoder and decoder modules of our architecture, remove
the lane counting and Polyline-Rnn modules, and output a
sigmoid function corresponding to a dense 20 pixel wide
region around each lane boundary. In other words, we aim
to detect a dense representation of the lane boundaries. We
used the exact same architecture of our hierarchical network
and trained the network using binary cross-entropy for three
epochs. We use the Adam optimizer [15] with an initial
learning rate of 0.001 and weight decay of 0.0001 deter-
mined from the validation set. We have visualized some
lane detection results in Fig. 5.

Note that while the output of our hierarchical model is
a structured representation where each lane boundary in-
stance is predicted by the network, the baseline only outputs
a dense representation of the lane boundaries and further
post processing steps are required to obtain each individual
instance. Thus, we proceed as follows: First, we thresh-
old the sigmoid output of the baseline for different values



Figure 7. Top Row: Point cloud sweep of the road. Middle Row:
The sigmoid output of the baseline corresponding to a 20 pixels
wide region around the lane boundaries. Bottom Row: The lane
boundary instances outputs of our network.

of 0.3, 0.5, 0.7 and 0.9 to remove spurious detections. Each
threshold is considered as a baseline and we refer to them
as CE at 0.3 to Ce at 0. Next, separately for each baseline,
we skeletonize the result and finally obtain each individual
lane boundary instance using connected components.

Topology: Our first metric focuses on evaluating whether
the correct number of lanes is estimated. In Fig. 8,
we demonstrate the cumulative distribution of the absolute
value of the difference between the ground truth number
of lanes and the predicted number of lanes by our network
as well as the baselines. Our model estimates the correct
number of lanes 92% of the time while deviating by one
or less lane boundaries almost 99% of the time. We note
that our method outperforms the strongest baseline (in terms
of topology) that retrieves the correct number of lanes only
46% of the time while being one away or less 61% of the
time. We highlight that our model is specifically designed
to output a structured representation of the lane boundaries
by learning to count and draw polylines. On the other hand,
the ad-hoc post processing steps applied to the baseline in-
troduce holes in places where the lane detections do not
fire and as such topology deteriorates. Hence the reason
some of the baselines predict more than 10 lane boundaries.
Moreover, our structured representation enables the annota-
tor to easily correct a mistake by either specifying the initial

Figure 8. The cumulative distribution of the absolute value of the
difference between the ground truth number of lanes and the pre-
dicted number of lanes by our network as well as the baselines.

region of a lane boundary (if it’s missed) or by deleting it al-
together. This benefit is not extendible to the baselines. We
will present an experiment later on that corroborates this as-
pect of our model.

Precission/Recall: We use the precision and recall met-
ric of [37]. We define precision as the number of predicted
polyline points within a threshold distance of a ground truth
lane boundary divided by the total number of points on the
predicted polylines. Recall is defined in a symmetric fash-
ion as with respect to a thresholded distance of the predicted
polylines. We set the thresholds at the intervals of 5, 10,
15, and 20 cm corresponding to a maximum deviation of
4 pixels from a polyline. Note that bigger thresholds are
not interesting as the autonomous vehicle should be able to
localize itself with high accuracy.

From Table. 5 one can note that the best performing
baseline in terms of precision, i.e. CE at 0.9, performs the
worst in comparison to CE at 0.5 that achieves the best re-
call. This alludes to the fact that when only a small number
of points are retained for a higher threshold, precision goes
up while the opposite holds for recall.

Our model beats the baselines in both precision and re-
call. Although the values are within 1-2 percentage points
of each other. We remind the reader that our method beats
the best performing baseline with a high margin when it
comes to retrieving the correct topology.

Annotator In the Loop: The output of our model is a
structured representation of the lane boundary instances and
as such is easily amenable to bring an annotator in the loop.
To demonstrate this, we perform an experiment on the set
of 687 examples where we predict the wrong topology. In
particular, the annotator either clicks on the starting region



Figure 9. Qualitative Examples. Top Row: Point cloud sweep of the road. Second Row: The ground truth lane graph. Third Row: The
lane boundary instances outputs of our network. Bottom Row: The predicted lane boundaries projected onto the image.

Precision at (cm) Recall at (cm)
5 10 15 20 5 10 15 20

CE at 0.3 0.200 0.550 0.773 0.879 0.203 0.560 0.788 0.896
CE at 0.5 0.211 0.575 0.796 0.896 0.209 0.574 0.799 0.894
CE at 0.7 0.212 0.577 0.801 0.903 0.207 0.566 0.787 0.887
CE at 0.9 0.212 0.580 0.810 0.917 0.198 0.546 0.762 0.861

Ours 0.226 0.609 0.827 0.92 0.223 0.6 0.816 0.908
Table 1. Comparison of our proposed model vs. the cross entropy baseline in terms of precision and recall for distances of 5 to 20 cm from
the lane boundaries.

of a lane boundary or removes one by just a click when it is
either missed or hallucinated respectively. In Table. 5, we
observe that among these failure cases, precision suffers af-
ter correction by a maximum of 2 % for different distances
to the lane boundary while recall increases by at least 1%
and maximum 10% at a 20 cm distance to the lane bound-
ary. This is expected since there is usually low evidence for
a lane boundary in failure cases and adding just the starting
region would improve only the recall but have an adverse
effect on the overall precision. Importantly, the annotator
takes on average 1.07 clicks to fix these issues.

We highlight that the annotator only needs to specify a
coarse starting region of the lane boundary, e.g. Fig. 4,
rather than an exact initial vertex. This facilitates the task;

One can see from the Lidar images of Fig 5 that initial ver-
tex of the lane boundaries are not visible while it is easy to
guess the region where they begin.

Qualitative Examples: In Fig. 5, we demonstrate the
abilities of our model to make high precision and recall pre-
dictions with perfect topology. Our model is able to deal
with occlusions due to other vehicles and most importantly
has learned to extrapolate the lane boundaries to parts of
the image where no evidence exists. Moreover, our model
performs well at night where camera based models might
have difficulty. We also depict the projection of the pre-
dicted lane graph onto the frontal camera view of the road
for visualization purposes only.



Precision at (cm) Recall at (cm)
5 10 15 20 5 10 15 20

Ours Before Correction 0.195 0.534 0.748 0.851 0.169 0.461 0.647 0.736
Ours After Correction 0.188 0.515 0.726 0.833 0.189 0.519 0.731 0.841

Table 2. Evaluating the annotator in the loop by comparing precision and recall for before and after images with the wrong topology are
corrected. On average an annotator takes 1.07 clicks to fix these mistakes.

Figure 10. Failure Cases. Top Row: Point cloud sweep of the road.
Second Row: The ground truth lane graph. Third Row: The lane
boundary instances outputs of our network. Bottom Row: The
predicted lane boundaries projected onto the image.

Failure Modes: In Fig. 10 we visualize a few failure
cases. In columns 1 and 3, we observe that the topology
is wrong due to an extra predicted lane boundary. In the
second column, the road separator is mistaken for a lane
boundary. However, note that an annotator can pass through
these images and fix the issues with only one click.

Inference Time: Our model takes on average 175 ms for
one forward pass timed on a Titan XP. While the encoder-
decoder module takes only 15 ms, the majority of the infer-
ence time is spent on the convolution LSTM cells.

Learned Features: In Fig. 11 we visualize three chan-
nels of the last feature map of the decoder network before
feeding it is fed into the conv-lstm for lane boundary draw-
ing. The input to the network is a sparse point cloud and the

Figure 11. Learned Features. Top Row: Point cloud sweep of the
road. 2-4th Rows: Three feature map channels of the decoder
network. Bottom Row: The camera view of the vehicle.

output is a structured lane graph. We observe that in order
to learn this mapping, the network has learned to pick out
lane markings and extrapolate them to fine the boundaries.

6. Conclusion

In this paper, we proposed a hierarchical recurrent atten-
tion network that mimics how an annotator creates a map of
the road network. In particular, given a sparse lidar sweep
of the road, a recurrent attention module attends to the ini-
tial regions of the lane boundaries while a convolutional
LSTM draws them out completely. We developed a novel
loss function that penalizes the deviation of the edges of the
ground truth and predicted polylines rather than their ver-
tices. We demonstrated the effectiveness of our method by
extensive experiments on a 90 km of highway.
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